

Option Bâtiment et Ville Durables

IMMOBILIER DURABLE:

2ème partie Signal prix et valeur verte

> Jean Carassus Professeur Ecole des Ponts ParisTech 1er février 2017

Trois questions

- Comment un projet économiquement viable peut-il être financièrement non viable?
- Qu'est-ce qu'un « signal prix »?
- Pouvez-vous donner des exemples de signaux prix relatifs à l'immobilier et au développement durable?

La contradiction Economie / Finance: un projet d'investissement immobilier d'efficacité énergétique

- Economie:

- Coût d'investissement plus élevé, coût d'exploitation moins élevé, coût global égal ou supérieur à un projet usuel
- Risque raisonnable, perspective d'augmentation du prix de l'énergie
- Projet économiquement viable

- Finance:

- Taux d'endettement de l'investisseur calculé sans tenir compte des économies futures
- Risque plus élevé par rapport au marché actuel
- Projet financièrement non viable

Contradiction Economie / Finance

- Solution n° 1: Intervention publique
 - Exemple A : Eco-prêt à taux zéro (Eco PTZ)
 - Marché bancaire corrigé par subvention
 - Cible: rénovation énergétique des logements privés
 - Financement: budget de l'Etat

- Exemple B: Certificats d'Economie d'Energie (CEE)
 - Décision publique: les CEE sont obligatoires pour les fournisseurs d'énergie (EDF, ENGIE, distributeurs de carburants) pour un montant de 345 TWh à économiser pour la période 2011-2013 contre un risque d'amende de 0,02€ par Kwh non économisé. Le dispositif a été ensuite prolongé en 2014.
 - Un objectif de 700 TWh est fixé pour la période 2015-2017, soit une perspective de 3 milliards € de travaux pour les obligés.
 - Financement : investisseurs

Contradiction Economie / Finance

- Solution n° 2: Intervention privée par étalement dans le temps
 - Exemple A: Contrat de Performance Energétique
 - Un propriétaire, public ou privé, confie à une société de prestation énergétique un investissement et une exploitation d'installation dans le cadre d'un contrat de plusieurs années.
 - Les économies d'énergie permettent d'amortir les travaux d'efficacité énergétique
 - Etalement dans le temps du paiement de l'investissement
 - Investisseur: prestataire de service énergétique
 - Financeur: économie d'énergie
 - Limite: porte le plus souvent sur l'installation énergétique, rarement sur le bâti.

- Exemple B: Contrat de Partenariat Public Privé
 - Un commanditaire public confie à un consortium privé (établissement financier + maître d'ouvrage + maître d'œuvre + entrepreneur + société d'exploitation) l'investissement d'efficacité énergétique et sa gestion dans un contrat de longue durée
 - Le commanditaire public paie avec un loyer annuel pendant toute la durée du contrat
 - Principe: le même que pour le CPE
 - Investissement plus important, portant sur le bâti et les installations
 - Porte sur un parc d'immeubles
 - Le premier PPP Energie: Conseil Régional Alsace sur 14 lycées

Deux facteurs clés

- Demande: le changement des mentalités
- L'offre: le changement des compétences

L'exemple du marché de la rénovation énergétique des logements

7 questions

1/ La rénovation des logements est-elle une question importante ?

2/ La rénovation énergétique des logements existe-t-elle ?

3/ Y a-t-il un problème de financement de la rénovation des logements?

4/ La demande a-t-elle confiance dans l'offre?

5/ Mais y a-t-il une offre pour répondre a la demande ?

6/ Le temps de retour sur investissement est-il une bonne question?

7/ Des solutions existent-elles ?

Rapport Stern*

Les deux principales conclusions du rapport sont:

- si aucune mesure n'est prise ("business as usual"), le changement climatique va se traduire par une baisse annuelle du PNB par habitant, avec un impact modéré d'ici 2050 (moins de 1 % par an), significatif entre 2050 et 2100 (de 1 à 7 % par an), catastrophique entre 2100 et 2200.
- l'humanité a les moyens d'agir rapidement contre ce changement climatique à un coût raisonnable.

*The Stern Review: the Economics of Climate Change 2006

Le caractère décisif du signal prix

Selon Stern, cette baisse de richesse peut être enrayée avec la mise en place d'une politique fondée sur:

- l'émergence d'un prix mondial du carbone, par l'instauration d'un marché mondial des quotas d'émission de gaz à effet de serre ou par la taxation des émissions,
- la mise en place d'une politique de mobilisation de progrès technique, soutenue par des signaux prix,
 - la levée des barrières au changement des comportements

Le signal prix

- Exemple A: marché du CO2
 - Décision publique (Europe): le CO2 n'est plus gratuit
 - Un quota d'émission est imposé aux gros émetteurs industriels,
 - Ces quotas font l'objet d'un marché
 - Limite: obtention par les industriels de quotas gratuits pendant une période plus ou moins longue
 - Pas d'application à l'immobilier et au bâtiment

- Exemple B : taxe carbone
 - Décision publique: les produits émettant du carbone sont taxés,
 - Principales cibles: transports, immobilier
 - Variante: Carbon Reduction Commitment au Royaume-Uni
 - En France, la taxe carbone (contribution climat énergie) a été mise en place en avril 2014. Elle devrait atteindre 56 € la tonne de CO2 en 2020 et 100€ en 2030.

Panorama mondial des prix du carbone en juillet 2016

Prix 2016 donnés en €/t COzéq

Système de quotas d'émission

Système de quotas d'émission à venir

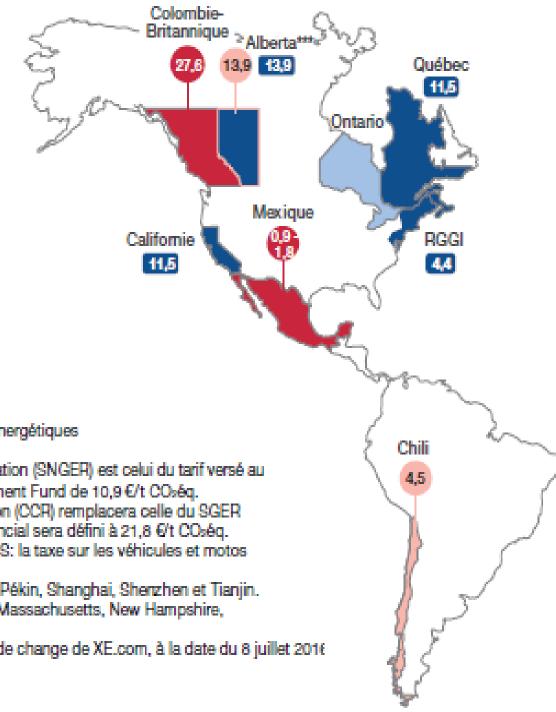
Taxe carbone

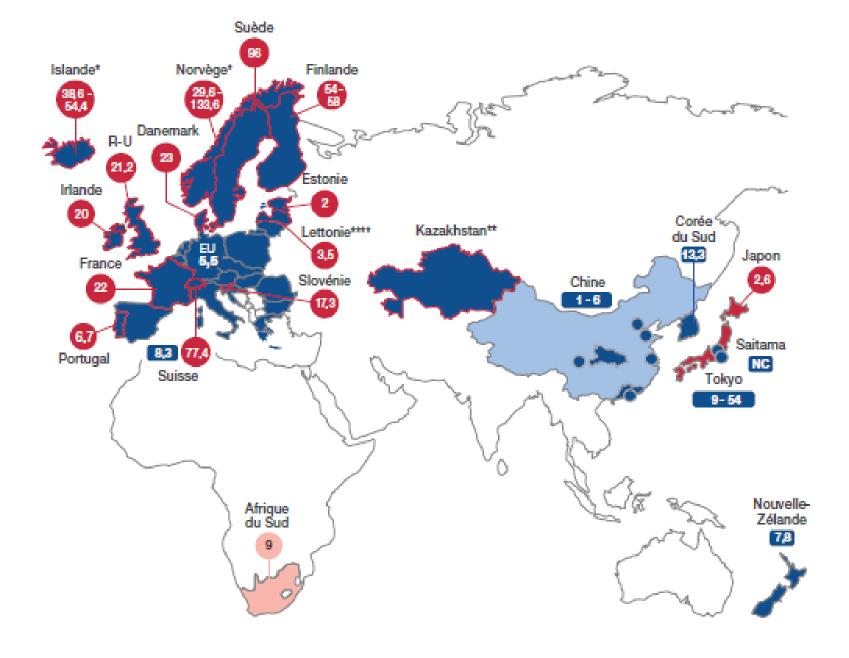
Taxe carbone à venir

Variation de prix selon les secteurs/produits énergétiques

** ETS suspendu jusqu'en 2018

*** Le prix 2015 du Specified Gas Emitters Régulation (SNGER) est celui du tarif versé au Fond Climate Change and Emissions Management Fund de 10,9 €/t CO₂éq. La législation Carbon competitiveness Regulation (CCR) remplacera celle du SGER en 2018, date à laquelle un prix carbone provincial sera défini à 21,8 €/t CO₂éq.


**** Lettonie a deux taxes sur les émissions de GES: la taxe sur les véhicules et motos et la taxe sur les ressources naturelles.


Pilotes chinois: Chongqing, Guangdong, Hubei, Pékin, Shanghai, Shenzhen et Tianjin.

RGGI: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire,

New York, Rhode Island, Vermont.

Note : les prix sont calculés en fonction des taux de change de XE.com, à la date du 8 juillet 2016

Source: I4CE

Trois questions

- Qu'est-ce que la valeur verte immobilière?
- Connaissez-vous des analyses relatives à la valeur verte?
- Comment pérenniser la valeur verte dans le temps?

Valeur immobilière verte

Immeubles à basse performance énergétique et environnementale

toutes choses égales par ailleurs

Risque d'obsolescence = risque de baisse de valeur économique (valeur de revente plus basse ou investissement plus élevé de remise à niveau)

Voir le dossier Immobilier et Valeur verte du Plan Bâtiment Durable:

http://www.planbatimentdurable.fr/immobilier-et-valeur-verte-r185.html

Yoshida and Suguira (2013)	Tokyo Green Labeling System	Japan (Tokyo)	Varies over time		Initial green premi- um can be negative but becomes posi- tive as the building ages
Fuerst <i>et al.</i> (2013)	EPCs	UK	EPCs A and B sold for 14% more than EPC G		Higher premium for terraced dwellings and flats compared to detached dwell- ings
Walls, Palmer and Gerarden (2013)	Energy Star and local green certifications	USA	Positive only for homes built between 1995 and 2006		(three metropolitan areas)
Hyland, Lyons and Lyons (2013)	Building Energy Ra- tings (BERs)	Ireland	11% for A-rated buildings (1.3% increase per EPC rating)	2% for A-rated buildings (0.5% increase per EPC rating)	
Cajias and Piazolo (2013)	EPCs	Germany	-0.45% for 1% energy consumption reduction	-0.08% for 1% energy consumption reduction	+3.15% for building return
Högberg (2013)	EPCs	Sweden	Positive		
Lyons (2013)	CPEB ratings	Belgium	Positive	Positive	Price effect is sig- nificantly smaller at low CPEB scores – disappears at very low score
Ademe (2013)	EPCs (DPE)	France	individual houses : 15% for ratings A, B compared to D, -10% for ratings F and G		
Kahn and Kok (2014)	EPA, LEED and GreenPoint	USA (Califor- nia)	2-4 %		single-family home
Deng and Wu (2014)	Green Mark	Singapore	10% at resale stage 4% during the presale stage.		
Fuerst and Shimizu (2014)	Tokyo Green Labeling System	Japan (Tokyo)	5.9% asking price 1.8% transaction price		increase in the first years, decline of the premium over the last two years
Freybote, Sun and Yang (2015)	LEED Neighborhood	USA (Portland)	Non significative		spatio-temporal au- toregressive (STAR) model

McAllister (2012)

(2014)

Gabe and Rehm (2014)

Das and Wiley (2014)

Newell, MacFarlane and

Veld and Vlasveld (2014)

Walker (2014)

Fuerst, Tommasso and

USA

Australia

Australia

USA

USA

LEED (2007 – 2012)

Energy Star (2007-

NS

4.5%

SB Alliance Sustainability thresholds generating Value 11% for dual certified buildings

(LEED + Energy Star)

the neighborhood

income return: 0.52%

expires

LEED premia are increasing with

market acceptance, rather than

decreasing as the novelty effect

Wer initial (2022)	2012)		1.570			(CEED : Energy star)
Kok, Miller and Morris (2012)	LEED EBOM (2005 -2010)	USA		7%		
Reichardt <i>et al.</i> (2012)	LEED (2000- 2010) Energy Star (2000- 2010)	USA		2.9% 2.5% with a peak in 2008	NS positive	
Fuerst, van de Wetering and Wyatt (2013)	EPCs	UK		11% (A-C rated)		Lower service charges for rated A-C
McGrath (2013)	LEED and Energy Star	USA				capitalization rates 0.364 lower than their non-certified coun- terparts
Nappi-Choulet and Décamps (2013)	French EPCs (DPE)	France	Positive for industrial	Positive premium for all types of building		
Bonde and Song (2013)	EPCs	Sweden	NS			
Chegut, Eihholtz and Kok	BREEAM (London)	UK	26%	21%		Premium decrease with the share of certified buildings in

16.4 %

10.6%

Positive

NS

No premiums

Positive

NS

McGrath (2013)	LEED and Energy Star		
Nappi-Choulet and Décamps (2013)	French EPCs (DPE)		

NABERS

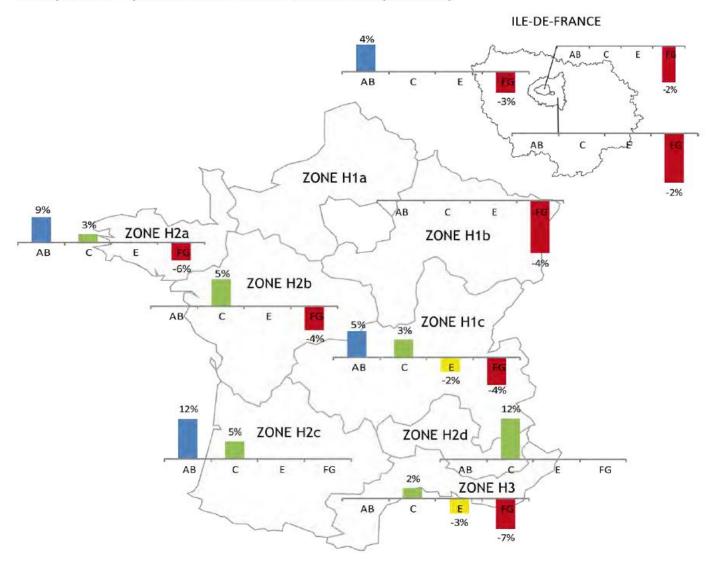
LEED


NABERS

Energy Star (Retail)

Energy Star

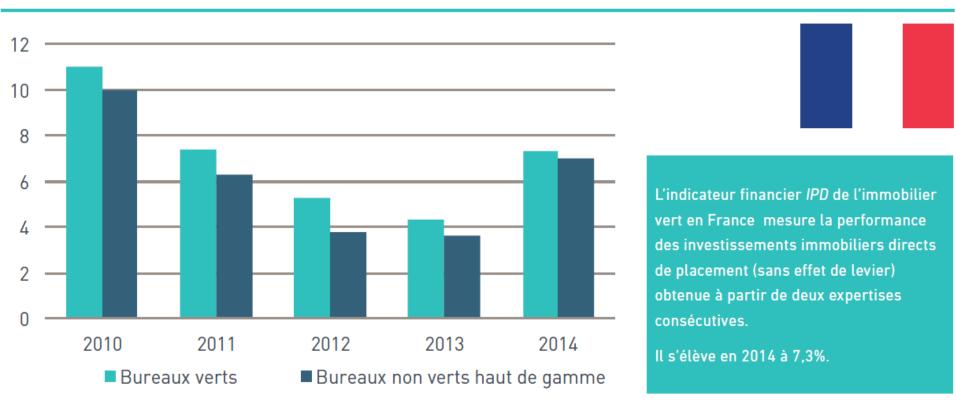
5.1 / Estimation de la valeur verte pour les maisons


Carte 3 : estimation de l'impact de l'étiquette énergie (variation du prix en % par rapport à celui d'une maiso d'étiquette D – période 2012-2013, France métropolitaine)

5.2 / Estimation de la valeur verte pour les appartements

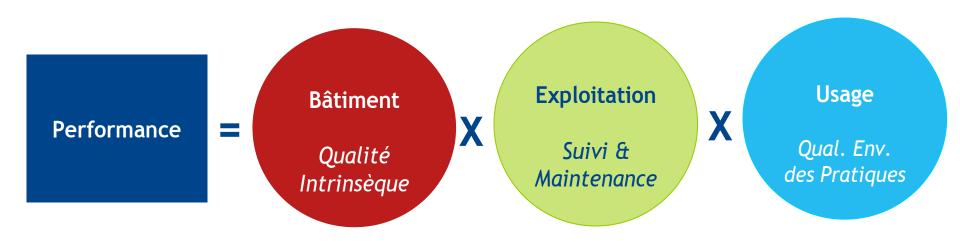
Carte 4 : estimation de l'impact de l'étiquette énergie (variation du prix en % par rapport à un appartemen d'étiquette D – période 2012-2013, France métropolitaine)

jean.carassus@immobilierdurable.eu

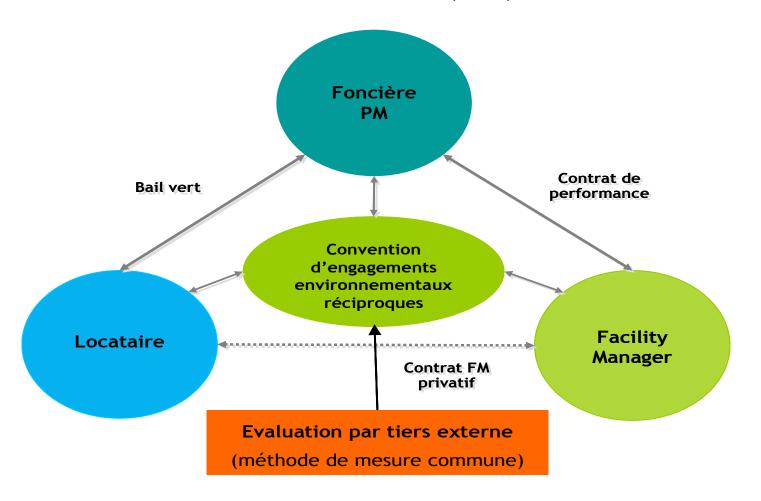

Source: Notariat Association Dinamic 2015

INDICATEURS ANNUELS IPD® DE L'IMMOBILIER VERT EN FRANCE

Performance financière. Résultats au 31 décembre 2014.


jean.carassus@immobilierdurable.eu

- L'augmentation de la productivité du personnel de bureaux « verts » accroit les perspectives de mise en place par le marché d'une « valeur verte ».
- Mais la performance énergie environnement santé n'est pas automatiquement au rendez-vous
- Cette performance dépend:
 - Des caractéristiques de l'immeuble
 - De la qualité de l'exploitation
 - Du comportement des utilisateurs



Les contributeurs de la valeur verte

Les nouvelles relations contractuelles pour la performance

- Le plus souvent, la valeur verte n'est pas perçue comme une surcote d'immeubles certifiés verts par rapport aux immeubles non verts de même qualité (localisation, confort)
- Mais comme un risque de décote d'immeubles non verts par rapport aux immeubles certifiés verts comparables.
- La valeur verte est perçue comme un risque d'obsolescence des immeubles non verts.

Question

Qu'est-ce que l'obsolescence?

L'innovation crée l'obsolescence

Obsolescence

= inadaptation d'une offre à une demande, due à l'apparition d'une offre innovante mieux adaptée à la demande

= destruction de valeur

Obsolescence d'immeuble: exemple 1

Années 1980

Evolution de la demande Plus de confort

Offre nouvelle mieux adaptée

à la demande :

bureaux climatisés

Obsolescence des bureaux non climatisés

Destruction de valeur

Obsolescence d'immeuble: exemple 2

Années 2007-2013

Evolution de la demande RSE, ISR

Offre nouvelle mieux adaptée à la demande : certification HQE®

Obsolescence des bureaux neufs franciliens non HQE®

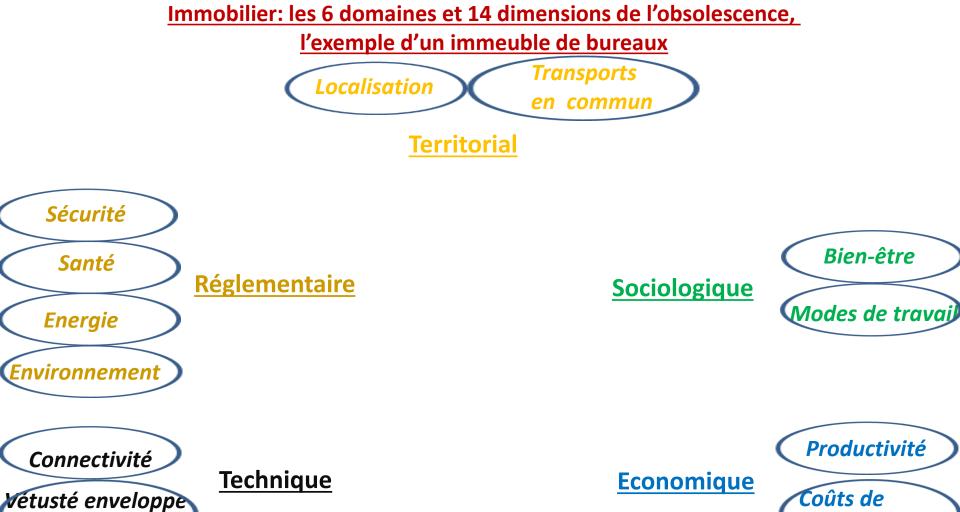
Disparition de l'offre de bureaux neufs franciliens non HQE® « tombés en désuétude » en moins de 6 ans !

Question

L'obsolescence est-elle la vétusté?

Les 6 dimensions de l'obsolescence d'un immeuble

Territoriale: localisation, distance aux transports en commun


Sociologique: modes de vie et de travail, bien-être

Economique: coût d'exploitation et productivité (tertiaire)

Architecturale: architecture obsolète, flexibilité du parti technico-architectural

Technique: équipements de chauffage, ventilation, climatisation, connectivité (tertiaire)

Réglementaire: sécurité, énergie, environnement, santé

Architectural

équipements

Qualité Flexibilité technicoarchitecturale architecturale

Source: Jean Carassus

fonctionnement

Merci pour votre attention

Pour en savoir plus sur l'économie de l'immobilier durable, consultez le blog

www.immobilierdurable.eu

(Politiques et marchés, coûts et rentabilité, finance)